
Beating the System:
Getting Things Into Context!
by Dave Jewell

This month, as promised, I’m
going to describe how to use

Delphi to implement context
menus. A context menu is a popup
menu displayed by the Windows 95
(and now NT 4.0) Explorer when
you right-click on an item. Explorer
has a number of built-in context
menu items such as Cut, Copy,
Properties and so forth. However,
Explorer is a very customisable
piece of software and it’s possible
to add your own items to a context
menu depending, naturally, on the
type of file which has been clicked
on. In fact, it’s even possible to add
your own property sheets to the
dialog which hangs off the
Properties item of a context menu.

To see how useful this is in prac-
tice, it’s worthwhile getting a clear
picture of how Explorer imple-
ments context menus and looking
at a couple of examples of how this
functionality can be extended. If
Explorer knows how to open a file
of a specific type, it normally dis-
plays Open as the first item in the
menu. This applies to EXE files, any
document types for which an asso-
ciation exists and also folders. If
Explorer doesn’t know how to open
a particular item, you’ll see a con-
text menu item marked Open With.
This leads to a dialog box where
you tell Explorer which application
to associate with a particular file
extension.

WinZip is an example of a pro-
gram which makes good use of con-
text menus. If you select one or
more files in directory, WinZip will
add an Add To Zip item to the menu,
making it very convenient for add-
ing a bunch of files to an archive.
Similarly, if you examine the
context menu for a selected ZIP file,
you’ll see two items: Open and
Extract To. Both these items cause
WinZip itself to be started.

In a similar vein, Microsoft have
recently created their own new

compression format: CAB files.
CAB technology has been incorpo-
rated into the new version 3.0
Internet Explorer such that when a
newly encountered Java class is
downloaded, it’s generally a CAB
file that comes down the wire, thus
minimising the amount of data that
needs to be transferred and im-
proving system response. As part
of the CAB initiative, Microsoft
have distributed a viewer program,
CABVIEW, which includes full
source code to a DLL that can be
used to extend the functionality of
Explorer, making it possible to ex-
amine the contents of a CAB file in
a natural manner.

As a final example, I’ve recently
come across a set of shell exten-
sions called Object-Site Shell Suite.
This adds lots of useful goodies to
Explorer’s context menus. My fa-
vourite is the ability to right-click
on a folder and immediately start
an MS-DOS command-line session
with the directory set to the
clicked-on folder – magic!

Registries, DLLs And COM...
Hopefully, the foregoing should
have convinced you that being able
to add to the context menu is a
useful technique. Even if you’re not
in the business of writing ZIP or
CAB utilities, you’ll often find that
there are operations which can be
performed on a program’s docu-
ment files which can be very con-
veniently done from Explorer, such
as validating a database file or
checking a diary for urgent ap-
pointments. As with WinZip, these
things may well invoke the main
program behind the scenes, but
the end-user perceives things as
being done directly by Explorer,
thus giving the impression that
your application is almost a part of
Windows itself.

OK, enough theory, what about
the practice? The bad news is that
adding shell extensions isn’t a triv-
ial job. There are three reasons for
this. Firstly, you need to add some
entries to the registry. These en-
tries allow Explorer to look up a

➤ Figure 1: Here you can see what happens when you click on a file
with an extension of DSJ. The Mega Menu item has been added by our
custom DLL. Note the custom file description to the right of the
selected file and the status bar at the bottom of the window.

44 The Delphi Magazine Issue 15

particular file extension and deter-
mine whether that file type has a
custom context menu. If so, the reg-
istry entries also tell Explorer
where to find the software which
builds the context menu. The sec-
ond reason is that this software
must be in the form of a DLL and
the third reason is that the DLL has
to conform to the conventions of
Microsoft’s COM architecture.
Let’s start with the easy bit by look-
ing at the required registry entries.
Some familiarity with the registry
architecture is assumed.

In simple terms, when you right-
click on a file of a certain extension,
Explorer looks up that extension in
the registry. Let’s suppose that the
file extension is DSJ (my initials).
Firstly, Explorer looks for a sub-
key called DSJ under the
\HKEY_CLASSES_ROOT tree of the reg-
istry. If found, this key will contain
a value string named Default. This
string might be set to DavesApp, it
tells Explorer what application is
associated with this file type. Bear
in mind that this isn’t necessarily
the human readable name of the
file type, it’s simply another key in
the registry.

Note: As an aside, Explorer looks
up this string (DavesApp in this
case) under the \HKEY_CLASSES_ROOT
tree to obtain the human readable
name of the file. This might yield a
full name such as Dave’s Killer App
File. It’s the string that appears in
the Explorer window under the
Type column. It should be obvious
that, for performance reasons, this
registry lookup isn’t happening all
the time: a lot of the information is
cached within Explorer. I’m just de-
scribing things this way for the
sake of simplicity.

Once it has the DavesApp string,
Explorer then looks for a context
menu handler. It does this by
looking for a registry entry named:

 \HKEY_CLASSES_ROOT\DavesApp\
 shellex\ContextMenuHandlers

This architecture allows several
different context menu handlers
(and indeed, other types of shell
extension) to be associated with
the same file type, but we’ll only
consider the simple case here.

Having looked up this entry, the
Default value of the entry contains
the name of the context menu
handler to use. This might be
DavesMenu, for the sake of argument.
Assuming that it is, Explorer will
then look for the key:

 \HKEY_CLASSES_ROOT\DavesApp\
 shellex\ContextMenuHandlers\
 DavesMenu

This registry entry will contain a
single Default value, this being the
CLSID of the context menu object
which we’re going to implement in
our DLL. If you haven’t seen a CLSID
before, a typical example looks like
this:

{D2AF7A60-4C42-11CE-B27D-00AA001F73C1}

At this point, we are nearly there
(or rather, Explorer is). Armed with
the CLSID of the required COM ob-
ject, it performs one final registry
lookup:

HKEY_CLASSES_ROOT\CLSID\
 {D2AF7A60-4C42-11CE-B27D-
 0AA001F73C1}\InprocServer32

Finally, this key contains a Default
value string which provides the full
pathname of the DLL which imple-
ments the required COM object.
Things can sometimes be even
more complex than this. For exam-
ple, it’s possible to associate a con-
text menu with any file extension.
In the above discussion, you’d do
this by replacing the string
DavesApp with a single asterisk. It’s
also possible to associate a context
menu with a folder rather than a
file, but we’ll stick to the most
straightforward case here.

The reason that I’ve taken you
through this blow-by-blow account
is so that you understand exactly
how the system associates a given
file extension with a particular con-
text menu. You need this informa-
tion in order to add the correct
entries to the registry as part of
your installation procedure.

In order to make it easier for you
to install my demonstration soft-
ware, the ZIP file on this month’s
cover disk includes a file called
DAVESAPP.REG, shown in Listing
1. If you haven’t used REG files be-
fore, you can add the contents of
this file to the registry simply by
using the Import Registry File“
option in the File menu of
REGEDIT.EXE. On my system, right-
clicking a REG file from an Explorer
window will give you a context
menu with a Merge option. This is
more convenient, but quite frankly
there are now so many add-ons in-
stalled into my Windows 95 setup
that I’m not sure whether or not
this is standard behaviour!

Writing The DLL
If you install the REG file as de-
scribed above, Explorer will look
for an in-process COM server
called DAVESAPP.DLL. It expects
to find this server in a folder which
is called:

c:\articles\delphi\context\DavesApp

Of course, this probably isn’t
where you decide to put the DLL:
just be sure to change the REG file
to agree with whatever path you
use before merging with the
system registry. Once you’ve done
it, if you create a small file with an
extension of DSJ, you should find

REGEDIT4
[HKEY_CLASSES_ROOT\.dsj]
 @="DavesApp"
[HKEY_CLASSES_ROOT\DavesApp]
 @="Dave’s Killer App Document"
[HKEY_CLASSES_ROOT\CLSID\{C0A3EA22-1C7A-11d0-BF05-444553540000}]
 @="Dave’s Killer App Document Context Menu"
[HKEY_CLASSES_ROOT\CLSID\{C0A3EA22-1C7A-11d0-BF05-444553540000}\InprocServer32]
 @="c:\\articles\\delphi\\context\\DavesApp\\DavesApp.dll"
“ThreadingModel”="Apartment"
[HKEY_CLASSES_ROOT\DavesApp\shellex\ContextMenuHandlers]
 @="DefMenu"
[HKEY_CLASSES_ROOT\DavesApp\shellex\ContextMenuHandlers\DefMenu]
 @="{C0A3EA22-1C7A-11d0-BF05-444553540000}"

➤ Listing 1: DAVESAPP.REG

November 1996 The Delphi Magazine 45

that Explorer reports the file type
as Dave’s Killer App Document.

The main source to the DLL is
given in Listing 2. This file is called
DAVESAPP.DPR, so as to produce a
DLL with the required name. The
resulting DLL file is just under 18Kb
in size. You’ll notice that the code
listing starts off with the declara-
tion of a const item, OurCLSID. This
is the CLSID by which the COM ob-
ject implemented by the DLL is
known. This constant must agree
with the CLSID definitions used in
the associated REG file. Strictly
speaking, you should generate a
new ID using Microsoft’s
UUIDGEN.EXE utility before install-
ing the software. Do bear in mind
that not all possible numbers are
valid: you can’t just randomly
dream up a CLSID of your own. If
you pass an invalid CLSID, your new
COM object will be politely ig-
nored. If you do change the CLSID,
bear in mind that it appears three
times in the REG file.

In order to conform to the COM
specification, an in-process server
must export two functions: DllGet-
ClassObject and DllCanUnloadNow.
The names of these functions must
not be changed, the system ex-
pects to see them! Both these rou-
tines are implemented within the
DAVESAPP.DPR code. The first,
DllGetClassObject, is responsible
for creating a new instance of a
special type of class called a class
factory. As the name suggests, a
class factory is used to create other
objects. This might seem like a
weird way of doing things. You
might be tempted to ask why the
DLL can’t directly create objects of
the type we’re interested in. The
reason for this is quite compli-
cated, but suffice to say that it
gives the system more flexibility
and allows us more control over
the structure of the DLL.

The DllGetClassObject function
simply checks to ensure that it’s
being called with the correct CLSID
and that a compatible interface is
being requested. If so, it instanti-
ates a copy of the shell factory ob-
ject and exits. The DllCanUnloadNow
routine is even simpler: it checks a
couple of global variables main-
tained by the ContextM unit (which

we’ll look at in a moment) to deter-
mine whether or not the DLL can be
unloaded. This is to prevent the
DLL from being unloaded while
there are still instantiated objects
belonging to the DLL: a potentially
disastrous scenario!

At this point, we’ve only de-
scribed the exported interface to
the class factory. The important
thing about class factories is the
type of objects which they them-
selves can create. In order to look
deeper, we need to examine the
code for the ContextM unit, this is
given in Listing 3. This is quite a
lengthy file and I’ve only included
the most important methods: the
full file is on this month’s disk.

Interfacing To Explorer
The class factory’s sole job is to
create objects of type TCon-
textMenuObject for anybody who
wants one, in this case, Explorer.
The TContextMenuObject is, in turn,
only a wrapper around two other
objects. These two objects are de-
rived from IContextMenu and
IShellExtInit. You can find infor-
mation on these standard classes
on the MSDN disk and in the Win32
SDK documentation. Put simply,

IContextMenu is responsible for
adding commands to Explorer’s
context menu and is also called
when a custom menu item has been
selected. The IShellExtInit class is
mainly responsible for getting the
name of the selected file from
Explorer.

You might find this all a bit con-
fusing. Why do we need all these
classes? Well, the important thing
is that whatever object is created
by the class factory, it must be able
to supply the two interfaces men-
tioned above. Since Object Pascal
doesn’t support multiple inheri-
tance (thankfully!) the simplest
method of providing two interfaces
from a single object is to construct
that object as a wrapper around
two other objects which imple-
ment the interfaces we’re inter-
ested in. That’s all that
TContextMenuObject is used for: it’s
just a convenient way of achieving
the effect we want. When you ex-
amine the listing, you’ll notice that
the two child objects (for want of a
better word) both implement the
IUnknown interface (the call to
QueryInterface) by simply calling
back to the owner’s QueryInterface
handler. In the same way, the

library DavesApp;
uses Ole2, Windows, ContextM;
const
 { This ID MUST match what we put into the registry }
 OurCLSID: TGUID = (D1:$C0A3EA22; D2:$1C7A; D3:$11d0;
 D4:($BF, $05, $44, $45, $53, $54, $00, $00));
{ Exported function - Create the class factory }
function DllGetClassObject (const clsid: TCLSID; const iid: TGUID; var ppv):
 HResult; stdcall export;
var ShellClassFactory: IShellClassFactory;
begin
 Pointer (ppv) := Nil;
 Result := Class_E_ClassNotAvailable;
 { Validate the passed CLSID }
 if IsEqualIID (clsid, OurCLSID) then begin
 { Validate the interface ID }
 Result := E_NoInterface;
 if (IsEqualIID (iid, IID_IUnknown)) or
 (IsEqualIID (iid, IID_IClassFactory)) then
 try
 // Instantiate the class factory
 ShellClassFactory := IShellClassFactory.Create;
 Result := ShellClassFactory.QueryInterface (iid, ppv);
 if Result < 0 then ShellClassFactory.Free;
 except
 Result := e_OutOfMemory;
 Pointer (ppv) := Nil;
 end;
 end;
end;
{ Exported function - See if DLL can be unloaded }
function DllCanUnloadNow: HResult;
begin
 if (LockCount = 0) and (ObjCount = 0) then Result := 0
 else Result:= 1;
end;
exports
 DllGetClassObject, DllCanUnloadNow;
begin
end.

➤ Listing 2: DAVESAPP.DPR

46 The Delphi Magazine Issue 15

AddRef and Release methods are
passed straight back to the owner.
In the TContextMenuObject.QueryIn-
terface routine, the owner object
looks to see what sort of interface
is being requested and points the
caller at the appropriate child ob-
ject. By doing things like this, an
instance of TContextMenuObject
looks and behaves just like a single
object as far as interested parties
are concerned, but the effect has
been achieved without any of
the unpleasantness of multiple
inheritance!

From here on, things are fairly
plain sailing. The QueryContextMenu
method of the owned IContextMenu
object is responsible for adding
your own custom menu items to
the context menu. You’re supplied
with a conventional API-level menu
handle and told where to start plac-
ing items (the indexMenu parame-
ter). In this simple example, we
only add a single item to the menu,
but in a more complex example
such as WinZip, you might do
something more sophisticated. Do
exercise some restraint though: re-
member that the idea is for your
application to appear to seam-
lessly integrate into Windows 95,

not to take over the entire operat-
ing system. If you find yourself add-
ing a dozen items to the context
menu, you’re probably going about
things the wrong way! The Query-
ContextMenu returns the total num-
ber of items added as its function
result. Strictly speaking, this is an
HResult type, but since the other
fields are all zero anyway, we can
get away with passing an ordinary
integer value.

The next important method of
TOwnedContextMenu is the GetCom-
mandString function. Explorer calls
this when a particular menu item is
selected but hasn’t actually been
chosen. In other words, the user
hasn’t clicked the mouse or
pressed Enter at this point. This
gives the context menu handler an
opportunity to supply a hint string
which is displayed in Explorer’s
status bar along with other ordi-
nary menu hint information. After
checking that Explorer is request-
ing a hint string (the value of the
uType parameter) the method cop-
ies the appropriate string into the
buffer supplied by Explorer. Be-
cause we’ve only added one menu
item, the idCmd parameter is only
going to be zero. However, if we’d
added more menu items, then we’d

need to implement a full case state-
ment.

The final IContextMenu method of
interest is InvokeCommand. At this
point, the punter really has made
up his/her mind and clicked on a
menu item! We can tell which menu
item has been selected by examin-
ing the low-order word of the
lpVerb field inside the passed data
structure. Again, in this simple
case it’s just going to be zero, but
you’d normally implement another
case statement. In this example,
I’ve simply displayed a rather
pointless message box, but you’d
normally do something more sig-
nificant. In the case of most appli-
cations such as WinZip, you’ll want
to call CreateProcess (or WinExec if
you prefer the simple life) to
launch your primary application.
Typically, you’ll pass the path-
name of the required document
and maybe an additional switch pa-
rameter to indicate which of sev-
eral context menu items was
selected.

The final piece in the jigsaw is
TOwnedShellExtInit, our derived
version of IShellExtInit. The most
important method here is Initial-
ize. My code here has been more
or less taken from the MSDN docu-
mentation and converted it to

function TOwnedShellExtInit.Initialize(pidlFolder: Pointer;
 pdobj: IDataObject; hKeyProgID: HKey): HResult;
var fmte: TFormatEtc;
 medium: TStgMedium;
begin
 Result := E_Fail; { Assume the worst! }
 if pdobj <> nil then begin
 fmte.cfFormat := cf_hDrop;
 fmte.ptd := nil;
 fmte.dwAspect := dvAspect_Content;
 fmte.lindex := -1;
 fmte.tymed := tymed_hGlobal;
 { Use given IDataObject to get a list of filenames }
 Result := pdobj.GetData(fmte, medium);
 if Result < 0 then
 Result := E_Fail { Ensure only one file is selected }
 else
 if DragQueryFile(HDrop(medium.hGlobal),
 UInt(-1), Nil, 0) = 1 then begin
 { Stash the filename }
 SetLength (owner.fName, 512);
 DragQueryFile(HDrop(medium.hGlobal), 0,
 PChar(owner.fName), 512);
 Result := 0;
 end else
 Result := E_Fail;
 ReleaseStgMedium (medium);
 end;
end;
{ Add commands to a context menu }
function TOwnedContextMenu.QueryContextMenu(hMenu: hMenu;
 indexMenu, idCmdFirst, idCmdLast, uFlags: UInt): HResult;
begin
 { add our new menu item }
 InsertMenu (hMenu, IndexMenu, mf_String or
 mf_ByPosition, idCmdFirst, ’&Mega Menu...’);
 Result := 1; { return number of items added }
end;
{ Execute a given menu command }
function TOwnedContextMenu.InvokeCommand(

 lpici: PCMInvokeCommandInfo): HResult;
var sz: array [0..255] of Char;
begin
 Result := E_Fail;
 if HiWord(LongInt(lpici.lpVerb)) = 0 then begin
 if loWord(lpici.lpVerb) > 0 then
 Result := E_InvalidArg
 else begin
 { Normally, you’d case out on the menu identifier here }
 case loWord(lpici.lpVerb) of
 0: begin
 wvsprintf(sz,
 ’You picked: %s’, @owner.fName);
 MessageBox(lpici.hwnd, sz,
 ’My First Context Menu’, mb_ok);
 Result := 0;
 end;
 end;
 end;
 end;
end;
{ Return a menu item hint string }
function TOwnedContextMenu.GetCommandString(idCmd, uType:
 UInt; var res: UInt; pszName: LPStr; cchMax: UInt): HResult;
{ Explorer is requesting a menu hint string }
const gcs_HelpText = 1;
begin
 { If uType = gcs_HelpText, return menu hint string for Explorer }
 Result := e_NotImpl;
 if uType = gcs_HelpText then begin
 { Case out on the menu item }
 case idCmd of
 0: begin
 lstrcpy (pszName,
 ’My very first context menu item!’);
 Result := 0;
 end
 else Result := E_InvalidArg;
 end;
 end;
end;

➤ Listing 3

November 1996 The Delphi Magazine 47

➤ Figure 2:
Our fully
featured
example!

Pascal. This method has only one
aim in life, to extract the name of
the selected file from the passed
IDataObject and store it in the fName
member field of the owner object.
Notice that there’s an explicit
check that only one file is selected.
If you select more than one DSJ file
and then right-click the mouse, you
won’t see any additions to the con-
text menu. Again, this may or may
not be what you want: the WinZip
context menu handler will allow
you to select multiple files and add
them to a new archive in one quick
operation. It all depends on the na-
ture of your application and what
you want to do.

Conclusions
Although the ContextM unit is only
about 350 lines of source code,
don’t be fooled! I worked hard to
achieve this level of apparent sim-
plicity! In practice, most Delphi ap-
plications that want to add to
Explorer’s namespace (a term
which includes custom context
menus, property sheet extensions
and much more) will need to use a

large unit called SHELLOBJ.PAS.
This unit, in turn, calls another unit
called REGSTR.PAS. These units
should have been supplied by
Borland but weren’t. Instead, some
enterprising individual took the
trouble to convert the C/C++ defini-
tions into Object Pascal and re-
leased the files into the public
domain. I’ve included the neces-
sary units on this month’s disk as a
file called SHELLOBJ.ZIP.

Strictly speaking, I should have
employed these additional units in
my example program, but I thought
you might be overwhelmed by the
number of large units needed to do
the job. Instead, I stripped away
everything except the bare mini-
mum needed for writing context
menu handlers and added the nec-
essary class and method defini-
tions to the implementation part of

ContextM. In this way, the unit is
stand-alone and we both have
some chance of understanding
what’s going on! I do encourage
you, though, to delve deeper into
the SHELLOBJ.PAS unit since there
are many other goodies in there
which you can use to extend
Explorer’s functionality in various
ways.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi
Programming published by Wrox
Press. You can contact Dave by
email as DaveJewell@msn.com,
DSJewell@aol.com or on Compu-
Serve as 102354,1572

48 The Delphi Magazine Issue 15

	Registries, DLLs And COM...
	Writing The DLL
	Interfacing To Explorer
	Conclusions

